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A novel algorithm, PILOT_PTM, has been developed for
the untargeted identification of post-translational mod-
ifications (PTMs) on a template sequence. The algorithm
consists of an analysis of an MS/MS spectrum via an
integer linear optimization model to output a rank-or-
dered list of PTMs that best match the experimental
data. Each MS/MS spectrum is analyzed by a prepro-
cessing algorithm to reduce spectral noise and label
potential complimentary, offset, isotope, and multiply
charged peaks. Postprocessing of the rank-ordered list
from the integer linear optimization model will resolve
fragment mass errors and will reorder the list of PTMs
based on the cross-correlation between the experimen-
tal and theoretical MS/MS spectrum. PILOT_PTM is in-
strument-independent, capable of handling multiple
fragmentation technologies, and can address the uni-
verse of PTMs for every amino acid on the template
sequence. The various features of PILOT_PTM are pre-
sented, and it is tested on several modified and unmod-
ified data sets including chemically synthesized phos-
phopeptides, histone H3-(1–50) polypeptides, histone
H3-(1–50) tryptic fragments, and peptides generated
from proteins extracted from chromatin-enriched frac-
tions. The data sets consist of spectra derived from
fragmentation via collision-induced dissociation, elec-
tron transfer dissociation, and electron capture dissoci-
ation. The capability of PILOT_PTM is then bench-
marked using five state-of-the-art methods, InsPecT,
Virtual Expert Mass Spectrometrist (VEMS), Modi, Mas-
cot, and X!Tandem. PILOT_PTM demonstrates superior
accuracy on both the small and large scale proteome
experiments. A protocol is finally developed for the anal-
ysis of a complete LC-MS/MS scan using template se-
quences generated from SEQUEST and is demonstrated
on over 270,000 MS/MS spectra collected from a total
chromatin digest. Molecular & Cellular Proteomics 9:
764–779, 2010.

Identification of the types of post-translational modifica-
tions (PTMs)1 of various organisms is currently a major chal-
lenge in the field of proteomics. MS/MS has shown to be an
excellent tool for de novo peptide sequence prediction and
database peptide identification and is indispensable in deter-
mining PTMs (1, 2). Many research groups (3–28) have incor-
porated modification discovery into their respective identifi-
cation algorithms and utilize multiple databases, including
UniMod (29), RESID (30), and Delta Mass,2 to build a list of
variable modifications that can exist on a candidate peptide.
To date, there exist two types of algorithms for identification
of PTMs: (a) hybrid sequence tag/database approaches (3–9,
28), which develop a sequence tag and subsequently com-
pare this tag with a database to extract a candidate peptide
sequence and determine the set of PTMs that best explain the
MS/MS spectrum and (b) pure database-based approaches
(10–15, 23–27), which directly compare the experimental
peak list with a theoretical peak list derived from candidate
peptides in a database. Both approaches have had success
both in validation of known modifications and discovery of
novel ones. To our knowledge, there is no de novo approach
for identification of PTMs using a comprehensive variable
modification list.

The hybrid methods, denoted as (a), are beneficial because
the derivation of the sequence tag may limit the size of the
database to proteins that contain that sequence tag. This
approach (3) can allow for a richer set of variable modifica-
tions to be considered on candidate peptide sequences due
to the database size reduction. For example, the InsPecT
algorithm (4) will generate de novo sequence tags of a fixed
length and scan a trie-based database for all instances of the
tag. Each distinct variable modification combination, or dec-
oration, is entered in a mass-ordered list prior to database

From the Departments of ‡Chemical Engineering, §Chemistry, and
¶Molecular Biology, Princeton University, Princeton, New Jersey 08544

Received, October 16, 2009, and in revised form, January 22, 2010
Published, MCP Papers in Press, January 26, 2010, DOI 10.1074/

mcp.M900487-MCP200

1 The abbreviations used are: PTM, post-translational modification;
VEMS, Virtual Expert Mass Spectrometrist; ETD, electron transfer
dissociation; ECD, electron collision dissociation; ILP, integer linear
optimization; LP, linear programming; PL, protein list; TS, template
sequences; CPU, central processing unit.

2 K. Mitchelhill, Delta Mass: a Database of Protein Post Transla-
tional Modifications.

Research

© 2010 by The American Society for Biochemistry and Molecular Biology, Inc.764 Molecular & Cellular Proteomics 9.5
This paper is available on line at http://www.mcponline.org



searching. When a peptide matching the tag is found, the
algorithm will attempt to increase the length of the tag with an
amino acid sequence if the mass of the sequence plus the
mass of one decoration is equal to the predetermined mass
gap. The Virtual Expert Mass Spectrometrist (VEMS) (6) uses
both a database-independent search for generation of se-
quence tags and a database-dependent search to determine
possible peptides. Any sequence tag that is not validated by
a peptide found in the database-dependent search is com-
pared with the list of proteins containing peptides found in the
database-dependent search to generate candidate amino
acid sequences. All combinations of variable modifications
that equal the difference between the parent mass and the
candidate sequence mass are tested to derive the best pos-
sible modification (6). The Modi algorithm (7) assumes that the
database has been reduced a priori to a candidate subset of
20 proteins. After filtering the MS/MS spectrum, the algorithm
generates a list of sequence tags derived from the spectrum
and attempts to explain the mass gaps using any of the
modifications from the UniMod database.

Although sequence tags have proven to be very capable in
determining the candidate peptide sequence, the success of
these methods relies greatly on the accurate prediction of the
sequence tag. Pure database methods, denoted earlier as (b),
remove this need by directly obtaining the peptide sequence
(with or without modifications) from a database. These ap-
proaches are also beneficial because they use all of the
MS/MS spectrum peak information at once when analyzing a
candidate peptide. That is, for each candidate sequence in
the database, a full set of theoretical ion fragments may be
compared with the experimental MS/MS spectrum peaks to
derive a score for the candidate sequence. The potential
drawback of the pure database algorithms is the limitation of
variable modifications that can be analyzed. Each variable
modification will create an additional copy of the amino acid
that must be analyzed when developing a theoretical candi-
date peptide from the database.

When analyzing the entire database with a small modifica-
tion set, these algorithms have been very effective in identi-
fying modified spectra. The SEQUEST algorithm (10) uses a
technique known as cross-correlation to mathematically com-
pare the overlap between the theoretical spectrum from a
candidate database peptide and the experimental spectrum.
Mascot (11) incorporates probability-based searching to lo-
cate a candidate peptide sequence that scores above a cer-
tain expectation threshold dependent on the size of the da-
tabase. X!Tandem (14) also uses a probabilistic search
method to determine the best peptide match to a spectrum.

A major limitation of many of the preceding algorithms is the
inability to interpret electron transfer dissociation (ETD) (32–
34) or electron collision dissociation (ECD) (35, 36) spectra.
ECD and ETD both involve the reaction of an electron with a
protonated cation to form an odd electron peptide. This pro-
cess induces large amounts of backbone cleavage to yield

c-ions and z�-ions (32, 35) that are analogous to the b-ions
and y-ions produced from CID. Although the c-ions and z�-
ions are often the most abundant ions present, both ETD and
ECD spectra have been known to show b-ions, y-ions, and
their neutral losses as well (37). ECD and ETD enhance the
diversity of peptides that can be fragmented because they
can analyze bigger peptides with higher charge state. In fact,
a recent decision tree model (38) was developed to differen-
tiate which parent mass and charge states are most appro-
priate for CID and ETD. Generally, CID will provide the most
fragmentation for peptides of charge 2 or high mass peptides
of charge 3. Low mass peptides of charge 3 and all peptides
of charge greater than 3 may have better fragmentation using
ETD or ECD (38). Unlike CID, ECD and ETD cleavage is very
weakly affected by the amino acid sequence and generally
provides more complete coverage than CID alone when used
on peptides with higher charge density. Depending on the
precursor charge and basic residue location, one can expect
a large fraction of complementary c-ions and z�-ions to be
present in the spectral data. Additionally, both ECD and ETD
also prevent cleavage of labile modifications (33, 36). Al-
though the mechanism of cleavage during ECD and ETD is
still debated, PTMs are fully present on the c-ions and z�-ions
produced during cleavage. As ETD/ECD fragmentation tech-
niques become more readily available, they will serve as a
complement for CID technology, and hence it is desirable that
computational algorithms be able to handle inputs from all
three techniques.

A further limitation of most of the preceding algorithms is
the inability to search for a large amount of variable modifi-
cations. Enumerating all combinations of the variable modifi-
cations will lead to an exponential increase in the search time
and can pose a significant problem when the database size is
large. This may be reduced by implementing a two-pass
approach (39–41) where the database is initially scanned
either with no modifications or a small subset of variable
modifications to eliminate proteins that did not score above a
given threshold (based on the peptide hits). Mascot (40),
X!Tandem (39), and InsPecT (41) will run a first pass search
with a small set of variable modifications to analyze spectra
that are either unmodified or contain the queried modifica-
tions. Because of the reduced database size, additional vari-
able modifications as well as missed cleavages and other
unusual digestion/fragmentation information can be incorpo-
rated into the search.

Several groups (16, 17, 19, 21–23, 28, 40, 42) have devel-
oped untargeted algorithms to assign integer mass modifica-
tions to candidate peptide sequences. These algorithms
place a restriction on the number of modification sites to
enhance computational efficiency and reduce the false detec-
tion of low mass modifications. Alternatively, the Modi algo-
rithm (7) currently uses the entire UniMod (29) database as a
variable modification list, allows a user to input as many
additional modifications as necessary, and does not place an
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upper bound on the amount of modification sites. A recent
approach involving selective mass screening (18) has also
been developed to identify low abundance modifications us-
ing the Modi (7) algorithm. To aid in the development of de
novo identification algorithms for modified peptides, MS-Pro-
file (43) was recently developed to generate spectral profiles
of tandem mass spectra. Using the forward-backward algo-
rithm, MS-Profile is able to determine the probability that a
spectral peak corresponds to a peptide prefix mass without
explicitly enumerating the complete spectral dictionary for the
MS/MS spectrum.

We have developed a novel method, PILOT_PTM (Fig. 1),
for untargeted PTM prediction via integer linear optimization
(ILP) and tandem mass spectrometry. ILP has been an integral

tool in the de novo sequencing algorithm PILOT (44, 45) and
the hybrid algorithm PILOT_SEQUEL (46). Similar to these
previous methods, our objective function seeks to maximize
the sum of intensity contributions from theoretical peak
matches to the experimental spectrum given a set of logical
constraints. We expand on the previous methodology by di-
rectly incorporating the intensity contribution from both sets
of complementary ion peaks as well as all corresponding
offsets in the objective function. Given a template sequence of
amino acids, the model will seek to determine the optimal set
of modifications among a “universal” list based on the MS/MS
spectral data assuming that all template positions can contain
a PTM. This universal list (supplemental Table 1) consists of
912 known PTMs, chemical derivatives, amino acid substitu-

FIG. 1. a, overall framework for PILOT_PTM. b, identification of globally and locally significant peaks. The highest intensity filtered peaks are
labeled as globally significant. Any other filtered peak is labeled as locally significant if the peak intensity is greater than all other peaks within
a 5.0-Da mass window. c, a set of singly charged support peaks (red) for a candidate ion peak (blue). Each peak labeled as globally or locally
significant will be assigned a set of supporting peaks based on the filtered MS/MS. d, output from an optimal solution of PILOT_PTM. The blue
peaks on the left represent all MS/MS peaks that are activated for the optimal solution. The sets of blue peaks on the right represent all
candidate ion peak sets that will activate the optimal combination of MS/MS peaks. e, cross-correlation example for the template sequence
KSTGGKAPR with N-terminal propionylation, Lys-1 dimethylation, and Lys-6 acetylation.
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tions, non-enzymatic modifications, isotopic labels, and arti-
facts in the UniMod (29), RESID (30), and Delta Mass2 data-
bases. No upper bound is placed on the amount of
modification types or modification sites that can exist on the
template. The method rigorously guarantees the optimal set
of modifications without having to enumerate all combinations
of possible modifications.

EXPERIMENTAL PROCEDURES

Sample Preparation and Annotation

This section will detail the preparation of each of the data sets and
the annotation procedure for determination of PTMs. Annotated
spectra for all test data sets are provided as supplemental material.
The fragmentation methods, MS/MS instruments, and total scans for
each data set are given in Table I.

Test Set A: Phosphopeptides

Three sets of chemically synthesized phosphopeptides (AnaSpec)
were prepared for mass spectrometry by using 50% acetonitrile. The
peptides were analyzed using a data-dependent mode setting mea-
suring the parent mass followed by MS/MS fragmentation using
alternating CID/ETD scans (Table I). All peptides were isolated based
on parent mass, and a total of 218 spectra were manually validated.

Test Set B: Histone H3-(1–50) N-terminal Tail

Histone H3 was isolated from HeLa cells and prepared for mass
spectrometry as described previously (47). The H3-(1–50) N-terminal
tail was analyzed using an 8.5-tesla quadrupole FTMS instrument.
The 8� charge state was enhanced using the quadrupole and second
octopole of the instrument for selective ion accumulation. Selected
species were selected for fragmentation by ECD, and 58 spectra were
manually validated (47). Although multiple modified forms may be
present in each MS/MS spectrum, the annotation assigned corre-
sponds to the most abundant modified form.

Test Set C: Propionylated Histone Fragments

Histone H3 was isolated from mouse embryonic fibroblast cells
and prepared for mass spectrometry as described previously (48).
Propionylated H3 peptides were analyzed by nanoflow reverse-phase
HPLC-MS/MS using a linear quadrupole ion trap-Orbitrap mass spec-
trometer (ThermoFisher, San Jose, CA) operated in the data-depen-
dent mode with one full MS acquired in the Orbitrap followed by seven
data-dependent MS/MS spectra acquired via CID in the ion trap. A
representative set of parent masses was selected using the five

peptide fragments associated with the H3-(1–50) N-terminal tail and
modifications that are commonly found on histone H3 (Lys methyla-
tion, Lys dimethylation, and Lys acetylation) or are artifacts of the
propionylation procedure (Lys propionylation, Lys methylated propio-
nylation, N-terminal propionylation, N-terminal acetylation, and C-
terminal methylation), and a total of 553 spectra were isolated and
manually annotated.

Test Set D: Total Chromatin Fraction

HeLa S3 cells were cultured and harvested as described recently
(47). Chromatin fractions from the HeLa cells were roughly prepared
according to published procedures (49). Extracted protein was sep-
arated using one-dimensional SDS-PAGE and in-gel digested by
trypsin following treatment with iodoacetamide. Peptide digests were
then analyzed by nanoflow LC-MS/MS on an Orbitrap mass spec-
trometer as described previously (50).

To develop an annotated test set, we initially utilized the SEQUEST
algorithm (10) with a set of eight variable modifications (Met oxidation,
Lys methylation, Lys dimethylation, Lys acetylation, Arg methylation,
Ser phosphorylation, N-terminal acetylation, and C-terminal amida-
tion). We scanned the NCBInr database with human taxonomy and
allowed up to three missed cleavages. The fragment ion tolerance
was set to 0.5 Da, and the parent ion tolerance was set to 0.1 Da. The
cutoff XCorr for an annotation was 2.0 for a charge 1 precursor, 2.2 for
charge 2, 2.50 for charge 3, and 3.0 for charge 4. All such assign-
ments were then analyzed using Mascot (11) with the same variable
modification list and search parameters. The assignments that were
validated by Mascot with an expectation value of at most 0.1 were
retained.

The annotations were then manually examined to remove assign-
ments that appeared to correspond to low quality spectra. Each
peptide annotation was theoretically fragmented to develop a list of
predicted b- and y-ions. Using an appropriate noise threshold (51), we
remove all MS/MS spectra that do not contain at least 50% (Quality �
0.5) of the theoretical b- and y-ions (Equation 1).

Quality

�
Number of observed b-ions and y-ions above noise threshold

Number of predicted b-ions and y-ions

(Eq. 1)

This procedure produced 525 modified peptides corresponding to
193 different proteins and 6,025 unmodified peptides corresponding
to 2,123 different proteins.

TABLE I
Annotated test set information

Fragmentation method, MS/MS instruments, and total MS/MS spectra are presented for each test data set.

Subset MS instrument MS/MS instrument No. of CID scans No. of ETD scans No. of ECD scans

A1 Ion trap Ion trap 0 102 0
A2 Ion trap Ion trap 31 17 0
A3 Orbitrap Ion trap 13 55 0
B FTICR FTICR 0 0 58
C Orbitrap Ion trap 553 0 0
D1 Orbitrap Ion trap 525 0 0
D2 Orbitrap Ion trap 6,025 0 0
E1 Ion trap Ion trap 36 0 0
E2 Q-TOF Q-TOF 37 0 0
E3 Orbitrap Orbitrap 401 0 0

PILOT_PTM for Untargeted PTM Identification

Molecular & Cellular Proteomics 9.5 767

http://www.mcponline.org/cgi/content/full/M900487-MCP200/DC1


Test Set E: Additional Unmodified Peptides

Ion Trap Peptides—These spectra from the organism Mycobacte-
rium smegmatis are available from the Open Proteomics Database
(52). A test set of 36 spectra were verified by Mascot (11) and
SEQUEST (10) and further filtered based on the amount of b-ions and
y-ions above the noise level as described previously (44).

Q-TOF Peptides—These spectra were derived from a publicly
available data set (53). The spectra were collected with Q-TOF2 and
Q-TOF-Global mass spectrometers using a mixture of alcohol dehy-
drogenase (yeast), myoglobin (horse), albumin (bovine; BSA), and
cytochrome c (horse). A test set of 37 spectra was obtained using
only “acceptable spectra” as defined previously (44).

Orbitrap Peptides—Stock solutions of a 16-peptide mixture were
prepared containing equal amounts of each protein as described
previously (46). The proteins were digested with trypsin and analyzed
by automated microcapillary liquid chromatography and an LTQ-
Orbitrap hybrid mass spectrometer (Thermo Finnigan, San Jose, CA).
Both MS and MS/MS spectra were recorded on the instrument, and
a test set of 401 spectra was annotated using the SEQUEST algorithm
(10).

Novel PILOT_PTM Algorithm

The framework for PILOT_PTM (Fig. 1a) begins with a preprocess-
ing algorithm that filters the raw spectrum to extract all globally and
locally significant peaks based on their intensity (Fig. 1b). The pre-
processor is capable of handling inputs from multiple fragmentation
methods including CID, ETD, and ECD and will label candidate b-ion
(CID) or c-ion peaks (ETD/ECD), the appropriate complementary y-ion
(CID) or z�-ion (ETD/ECD), and any supporting peaks (isotopes, neu-
tral offsets, etc.) that may exist (Fig. 1c). The ILP model will derive a
rank-ordered list of activated globally significant peaks for the tem-
plate peptide sequence based on one or more sets of candidate ion
peaks (Fig. 1d). A complete list of candidate modified sequences that
satisfy the appropriate mass conservation constraints for each can-
didate ion peak set is then constructed. The postprocessing algorithm
section uses a cross-correlation function to mathematically verify the
overlap between the experimental MS/MS and the theoretical spec-
trum created by a candidate sequence (Fig. 1e). Each candidate
sequence is assigned a cross-correlation score and placed in a
rank-ordered list. The modified sequence that best explains the ex-
perimental data will have the highest cross-correlation score.

ILP Model

Given a template amino acid sequence of length K, each amino
acid is assigned an index, k, corresponding to the position in the
template sequence. Without loss of generality, the N-terminal amino
acid will correspond to k � 1, and the C-terminal amino acid will
correspond to k � K. During the preprocessing stage, a list of can-
didate ion peaks, j, is generated that represent possible b-ions (for
CID) or c-ions (for ETD/ECD). The peak masses will correspond to
singly charged ions, and the choice of ion type is arbitrary as y-ions
or z�-ions could easily be used in the formulation of the problem.

Sets—The set CSk (Equation 2) consists of all candidate ion peaks
j that are valid peaks for the template amino acid sequence at position
k. Given the universal list of modifications, the theoretical lower (mk

L)
and upper (mk

U) bounds on the masses of the ion peaks used to
construct the candidate sequence can be easily calculated. We can
then efficiently construct each set CSk by enumerating all j subject to
mk

L � mj � mk
U, and there exists an amino acid path from j to both the

N-terminal and C-terminal boundary conditions (N-term and C-term
B.C.) (54). The set Posj is simply a list of all template positions for
which j can be a candidate ion peak (Equation 3).

CSk � � j : mk
L � mj � mk

U,

� an amino acid path to the N-term and C-term B.C.�

(Eq. 2)

Posj � �k : j � CSk� (Eq. 3)

Supportj � �i : i is a supporting MS/MS

spectrum ion peak for candidate ion peak j� (Eq. 4)

Multi � � j : i � Supportj� (Eq. 5)

For each candidate ion peak j, we construct the set of supporting
MS/MS spectrum peaks, Supportj (Equation 4) using the globally and
locally significant peaks (indexed over i) determined from the prepro-
cessor (Fig. 1b). Supportj is intended to detail as much information
about the candidate ion peak j and is dependent on the fragmen-
tation method used. For ETD/ECD spectra, Supportj consists of
c2�-ions, z�-ions, z�2�-ions, b-ions, y-ions, and their corresponding
�1 and �2 isotopes. For CID spectra, the appropriate ions are
b2�-ions, y-ions, y2�-ions, their corresponding �1 and �2 iso-
topes, and their corresponding offsets (i.e. �H2O, �NH3, and
�CO). The y-ion or z�-ion series can be calculated from the modi-
fied parent mass by the formula c-ion � z�-ion � mP � mH � 2�mH�

for ETD/ECD spectra and y-ion � b-ion � mP � 2�mH� for CID
spectra, respectively. The set Multi is the set of all j such that i is a
supporting peak for j (Equation 5).

Binary Variables—We use binary variables (Equations 6 and 7) to
model the logical use of a candidate ion peak j at a template position
k (pj,k) as well as the logical use of an MS/MS spectrum ion peak i as
supporting information (yi). These variables are defined as follows.

pj,k � �1, if candidate ion peak j is used at template position k
0, otherwise

(Eq. 6)

yi � �1, if MS/MS spectrum peak i is used as supporting information
0, otherwise

(Eq. 7)

Mathematical Model—The constraints of the problem are chosen
to ensure proper use of the logical binary variables. At most, one
candidate ion peak j is able to be assigned to a template position k
(Equation 9). Additionally, we allow for missing candidate ion peaks j
associated with a template position k but require that there can be
no more than three consecutive missing candidate ion peaks
(Equation 10). We can also enforce the constraint that a candidate
ion peak j can be used at most once in the construction of a
modified sequence (Equation 11). Constraints are also introduced
to ensure that an MS/MS spectrum peak i is used properly as
supporting information. An MS/MS spectrum peak i can only be
activated if at least one of the corresponding candidate ion peaks
j in the set Multi is activated for any valid template position k in the
set Posj (Equation 12). We also ensure that a candidate ion peak j
is not activated if the corresponding MS/MS spectrum ion peak i is
not activated (Equation 13). The objective of the problem is to
maximize the intensity of the MS/MS spectrum peaks i used to
construct the modified sequence (Equation 8).

max
pj,k,yi

�
i

yi � Ii (Eq. 8)

subject to
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�
j�CSk

pj,k � 1 � k (Eq. 9)

�
k��k

k��k�3 �
j�CSk�

pj,k� � 1 � k � K � 2 (Eq. 10)

�
k�Posj

pj,k � 1 � j s.t. �Posj� � 1 (Eq. 11)

�
j�Multi

�
k�Posj

pj,k � yi � i (Eq. 12)

�
k�Posj

pj,k � yi � i, j � Multi (Eq. 13)

pj,k, yi � �0, 1� � i, � j,k	

This ILP model can be solved to global optimality using CPLEX (55) to
obtain a set of MS/MS spectrum peaks that correspond to one or
more modified sequences. Using integer cuts (56), a rank-ordered list
of the top 10 sets of MS/MS spectrum peak variables will be gener-
ated. CPLEX uses a branch-and-cut algorithm (57) where a subset of
the integer variables is fixed and the remaining integer variables are
relaxed so they can take on continuous values, and a linear program-
ming (LP) relaxation is formed. A branch-and-bound tree keeps track
of which integer variables are fixed in a given relaxation and stores
them in a “node” in the tree. The algorithm then parses through the
tree and solves an LP relaxation at each node to get a theoretical
upper bound on the optimal solution of the original problem. The
traversal of the tree is dependent on the search techniques being
used, some of which include depth-first search, breadth-first search,
and best-bound search. Complete enumeration is avoided using
fathoming criteria after each LP relaxation is solved. For further detail,
the reader is directed to Refs. 56 and 57. A complete description of
the ILP model and detailed solution strategies can be found in the
supplemental material. Note that the ILP model can be formulated
using network-based constraints (44, 45, 58–62).

Cutting Plane Constraints—When incorporating all of the previous
constraints, it is still possible to obtain linear programming relaxations
that consider a set of pj,k at adjacent template positions that do not
correspond to the mass difference of a modified or unmodified amino
acid. For each pj,k, we determine Invj,k,k�

L and Invj,k,k�
U , the set of can-

didate ion peaks j� at template position k� (k� � k and k� 
 k,
respectively) such that no jump exists between j and j�.

pj,k 	 �
j��Invj,k,k�1

L

pj�,k�1 � 1 @1 � k � K, j � CSk (Eq. 14)

pj,k 	 �
j��Invj,k,k�1

U

pj�,k�1 � 1 @1 � k � K � 1, j � CSk

(Eq. 15)

pj,k � �
k��k��1

k��k�1 �
j��CSk�

pj�,k� 	 �
j��Invj,k,k�

L

pj�,k� � 1

� 1 � k � K, j � CSk, k� � k � 1 (Eq. 16)

pj,k � �
k��k�1

k��k��1 �
j��CSk�

pj�,k� 	 �
j��Invj,k,k�

U

pj�,k� � 1

� 1 � k � K � 1, j � CSk, k � 1 � k� (Eq. 17)

�
j��CSk

mj��mj

pj�,k 	 �
j��CSk�1

mj�
mj,k
J,U

pj�,k � 1 � k � K � 1, j � CSk

(Eq. 18)

�
j��CSk

mj��mj

pj�,k 	 �
j��CSk�1

mj��mj,k
J,L

pj�,k � 1 � k � K � 1, j � CSk

(Eq. 19)

The improper assignment of any invalid peak combination at adjacent
template positions is prevented with Equations 14 and 15. For can-
didate ion peaks j and j� at template positions k and k�, respectively,
where �k� � k� 
 1, we would like to prevent an invalid combination
only if a candidate peak is not activated at any template position k�
between k and k�. This is illustrated using Equations 16 and 17. The
next set of constraints will be added when the linear relaxation acti-
vates candidate ion peaks at adjacent template positions where the
mass difference between them is less than the smallest modified
amino acid or greater than the largest modified amino acid. Thus, for
each candidate ion peak j at template position k, we establish mj,k

J,L

and mj,k
J,U, which are the maximum and minimum masses that can be

reached from j, respectively. All j� 
 CSk � 1 for which mj� 
 mj,k
J,U and

mj� � mj,k
J,L correspond to candidate ion peaks outside the minimum

and maximum possible mass peak boundaries. The improper assign-
ment of peak variables can be prevented by Equations 18 and 19.

Incorporating all of these equations in the initial formulation of the
problem results in a large number of constraints, many of which are
not activated for the optimal solution. To circumvent this computa-
tional burden, we apply them dynamically as cuts. That is, for a given
ILP relaxation, the violations of Equations 14–19 are checked, and
cuts are then added when needed.

Preprocessing Algorithm

The preprocessing algorithm begins by removing all peaks that are
associated with the precursor ion. For CID spectra, this includes the
precursor ion, its �1 and �2 isotopes, and any neutral losses (i.e.
�H2O, �NH3, and �CO) (63). For ETD/ECD spectra, we must remove
all peaks that correspond to distinct charge states of the precursor
ion and their isotopes. Additionally, all peaks that correspond to a
common neutral loss of a charge-reduced form of the precursor ion
(37) are removed. The MS/MS spectrum is then filtered to remove any
peak that is within an appropriate tolerance of another peak of higher
intensity. The filtered MS/MS spectrum is scanned to extract the
peaks with the highest intensity (Fig. 1b). All locally significant peaks
are then extracted if the peak intensity is greater than all other peaks
within an appropriate mass window (Fig. 1b).

The preprocessor scans and removes all peaks that are determined
to be �1 or �2 isotopes. If any doubly or triply charged peaks are
found based on isotopic offsets, the appropriate singly charged peak
of the same intensity is constructed. For CID spectra, all neutral
offsets are removed if the offset does not have a complementary
peak. The preprocessor then queries all candidate peaks and deter-
mines a full list of supporting peaks (Fig. 1c) for each candidate ion
peak. For CID spectra, this will include �1 and �2 isotopic offsets,
neutral losses (i.e. �H2O, �NH3, and �CO), and doubly charged
peaks. For ETD/ECD spectra, this will include isotopic offsets and
doubly charged peaks.

Postprocessing Algorithm

A postprocessing algorithm is used to score the candidate modi-
fied peptide sequences that are derived from the peak sets in the ILP
rank-ordered list. A cross-correlation technique (10) is used to mea-
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sure the mathematical overlap between the theoretical ions produced
from the candidate PTM set and the experimental spectrum. A gen-
eralized model is established that is similar to that used in PILOT (44,
45) and PILOT_SEQUEL (46). A mathematical overlap between the
theoretical and experimental spectrum is then calculated based on
monoisotopic masses for each candidate modified peptide (Fig. 1e).
Each candidate modified peptide is assigned a cross-correlation score
and inserted into a rank-ordered list. Similar to SEQUEST, this score is
a measure of how well the “expected” fragmentation pattern of a
particular modified peptide matches the experimental data and is not a
probabilistic metric (10). The modified peptide thought to best explain
the experimental data is given the highest cross-correlation score.

Once all peak intensities are assigned, the postprocessor scans
each set of candidate ion peaks j output from the ILP model. If the
mass difference between two candidate ion peaks j and j� that are at
least two template positions apart is equal to the sum of the interme-
diate unmodified residue masses, but the activated candidate ion
peaks in between j and j� indicate a possible modification, then these
intermediate candidate ion peak assignments are checked by looking
for the presence of peaks in the MS/MS spectrum that indicate
unmodified residues. If enough supporting information exists, then
the intermediate candidate ion peaks are reassigned to that of the
unmodified sequence and subsequently rescored.

Algorithm Scoring

The accuracy of an algorithm is measured using three metrics:
residue prediction accuracy, peptide prediction accuracy, and sub-
sequence accuracy. The definitions of each accuracy metric for
PILOT_PTM and all compared algorithms are given below.

Residue Prediction Accuracy

For a given template amino acid, we will define the residue predic-
tion accuracy for PILOT_PTM as 1 for the assignment of a modifica-
tion (or lack thereof) with mass within 0.1 Da (0.01 Da for ECD spectra)
of the proper annotated modification mass and 0 otherwise. For
alternative algorithms, the residue prediction accuracy will be equal to
1 if the algorithm assigned any amino acid (modified or unmodified)
with mass within 0.1 Da (0.01 Da for ECD spectra) of the proper
modified residue and 0 otherwise. When the size of the peptide
predicted by a competing algorithm is not equal to that of the anno-
tated peptide, we look for the alignment between the predicted pep-
tide and the annotated peptide that will yield the highest amount of
correct residues. If multiple peptides report the same “best” score for
an algorithm, then the peptide that has the highest amount of correct
residues is selected for accuracy quantitation.

Peptide Prediction Accuracy

The complete peptide prediction accuracy is set to 1 if all residues
have been correctly annotated with the proper modification (or lack
thereof) and 0 otherwise. The complete prediction accuracy within N
residues is set to 1 if at most N residues are assigned incorrectly and
0 otherwise. When the size of the peptide predicted by a competing
algorithm is not equal to that of the annotated peptide, the peptide
prediction accuracy is calculated using the alignment found during
calculation of the residue prediction accuracy.

Subsequence Length Accuracy

The subsequence length of an MS/MS spectrum is the longest
string of residues that were annotated correctly. That is, if an MS/MS
spectrum is assigned a subsequence with length L, then there exists
L consecutive amino acids that were assigned a residue prediction
accuracy of 1. The subsequence accuracy for a given length across a

data set is then determined by dividing all peptides that contain a
properly annotated subsequence with at least that length by the total
number of peptides with at least that length.

RESULTS

Algorithm Validation

The proposed method was tested on four modified test data
sets, including 218 phosphopeptides fragmented via ETD and
CID (A1–A3), 58 histone H3-(1–50) N-terminal tail spectra frag-
mented via ECD (47) (B), 553 propionylated histone H3-(1–50)
peptides fragmented via CID (48) (C), and 525 peptides from a
total chromatin fraction fragmented via CID. (D1) PILOT_PTM
was able to accurately identify 100% of the modified residues
from data set A1, 93.8% from A2, 89.7% from A3, 97.9% from
B, 98.6% from C, and 96.5% from D1 (Table II). The de-
crease in accuracy between data set A1 and data sets A2
and A3 was thought to be due to the lack of fragmentation
of the MS/MS spectrum in these data sets. We note that the
prediction accuracy for modified residues is the highest for
data sets A1 and C. These data sets generally had the best
fragmentation and thus contained many of their singly
charged ion peaks (supplemental annotations). For all mod-
ified data sets, PILOT_PTM was able to accurately identify
2,339 of the 2,393 modified residues (97.7%) and 15,752 of
the 15,864 unmodified residues (99.3%).

PILOT_PTM was also tested on two unmodified data sets,
including the 6,025 unmodified spectra identified from the
total chromatin fraction (D2) and 474 unmodified spectra frag-
mented via CID using ion trap, Q-TOF, and Orbitrap instru-
ments (44–46) (E1–E3). PILOT_PTM achieves a residue pre-
diction accuracy of 99.9% for the total chromatin data set,
98.2% for the ion trap data set, 99.7% for the Q-TOF data set,
and 99.8% for the Orbitrap data set. These results are evi-
dence both of the ability to properly identify no modifications
on unmodified peptides for various types of spectral instru-
ments and the potential for enhanced accuracy with better
spectral resolution (Table II).

The peptide prediction accuracy for a data set is defined as
the total amount of peptides with the correct modification (or
lack thereof) assigned to all residues in the peptide and is
displayed in Table III. PILOT_PTM reports a complete peptide
prediction accuracy of 100% for data set A1, 93.8% for data
set A2, 89.7% for data set A3, 89.7% for data set B, 94.4% for
data set C, and 95.2% for data set D1. Note that the accura-
cies for data sets A1, A2, and A3 will be exactly equal to the
modified residue prediction accuracy (Table II) because each
of the peptides contain exactly one modified phosphorylation
residue. The high prediction accuracies of data sets C and D1
show the ability of PILOT_PTM to fully annotate peptides that
are either highly modified (data set C) or part of a very com-
plex sample (data set D1). We also note that PILOT_PTM was
able to fully annotate 52 of the 58 histone N-terminal tail
peptides in data set B. This is an important result because
these peptides are the longest in all test data sets with 50
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amino acids, the fragmentation near the middle of the peptide
is not nearly as strong as it is near the termini (sup-
plemental annotations), and these spectra contain additional
modified peptides at lower stoichiometric amounts that could
reduce the ability of an algorithm to identify the most prevalent
form (47). The local inclusion of high resolution peaks in the
PILOT_PTM preprocessor as well as the accurate identification
of peaks of charge 2� and charge 3� from isotopic information
allow for the proper assignment of the lysine modifications near
the middle of the peptide. Table III also shows the improvement
in the peptide prediction accuracy when allowing for up to one
or two incorrect residues. When allowing for two incorrect mod-
ifications, PILOT_PTM was able to annotate 6,497 of the 6,499
unmodified peptides (100%) and 1,323 of the 1,354 modified

peptides (97.7%), showing that PILOT_PTM was still able to
annotate a majority of the peptide even when some residues are
incorrectly identified (Table III).

Comparative Studies

To benchmark the capability of the method, PILOT_PTM
was compared with five state-of-the-art algorithms using the
modified data sets B, C, and D1. The compared algorithms
include three hybrid sequence tag/database approaches
(InsPecT (4), Modi (7), and VEMS (6)) and two pure database
approaches (Mascot (11) and X!Tandem (14)). Data sets A1,
A2, and A3 were not used because all spectra are chemically
synthesized and thus did not necessarily correspond to a
peptide that would be found in a database as a result of a
tryptic digest. These data sets were instead analyzed with
phosphopeptide site assignment software Phosida (31). De-
tails about the algorithm parameters used for each data set
are given in the supplemental methods.

Test Set A: Chemically Synthesized Phosphopeptides—As
a large majority of the phosphopeptides used in this data set
did not correspond to a tryptically digested peptide found in
the NCBInr database, a comparison with the five software
packages listed above could not be done. A comparison can
be made with current phosphopeptide site assignment soft-
ware such as Phosida (31), which attempts to localize a phos-
phorylation modification on a template amino acid sequence.
Phosida is only capable of predicting serine and threonine
phosphorylations on peptides that contain at least 13 amino
acids. Of the four peptides meeting this criteria (P1, DLD-
VPIPGRFDRRVpSVAAE; P2, FQpSEEQQQTEDELQDK; P3,
RPVSSAApSVYAGAC; and P4, SFVLNPTNIGMpSKSSQGH-
VTK), Phosida was only able to assign the correct phosphor-
ylation residue to P1 and P3. The serine at position 15 was
incorrectly assigned the modification for P4, and no phosphor-
ylation was assigned for P1.

TABLE II
PILOT_PTM residue prediction accuracy

A correctly predicted amino acid residue (modified or unmodified) is assigned a value of 1 if the correct modification (or lack thereof) was
assigned to the residue and 0 otherwise. The accuracy for a data set is simply the total residue prediction accuracy for all peptides in the data
set. The percent of correct annotations is given in parenthesis next to the number of correct annotations. N/A, not applicable.

Data set All residues Modified residues Unmodified residues

Modified
A1 943/943 (1.000) 102/102 (1.000) 841/841 (1.000)
A2 747/772 (0.968) 45/48 (0.938) 702/724 (0.970)
A3 947/960 (0.986) 61/68 (0.897) 886/892 (0.993)
B 2,888/2,900 (0.996) 284/290 (0.979) 2,604/2,610 (0.998)
C 5,716/5,790 (0.987) 1,295/1,313 (0.986) 4,421/4,477 (0.987)
D1 6,850/6,892 (0.994) 552/572 (0.965) 6,298/6,320 (0.997)
Total 18,091/18,257 (0.991) 2,339/2,393 (0.977) 15,752/15,864 (0.993)

Unmodified
D2 84,498/84,521 (0.999) N/A 84,498/84,521 (0.999)
E1 402/408 (0.982) N/A 402/408 (0.982)
E2 417/418 (0.997) N/A 417/418 (0.997)
E3 3,632/3,638 (0.998) N/A 3,632/3,638 (0.998)
Total 88,985/88,949 (0.999) N/A 88,985/88,949 (0.999)

TABLE III
PILOT_PTM peptide prediction accuracy

Peptide prediction accuracy is defined as the total amount of
peptides with the correct modification (or lack thereof) assigned to all
residues. The accuracy within one or two residues represents the total
amount of peptides with at most one or two incorrect residues,
respectively. The percent of correct annotations is given in parenthe-
sis next to the number of correct annotations.

Data set Total Completely Within 1 Within 2

Modified
A1 102 102 (1.000) 102 (1.000) 102 (1.000)
A2 48 45 (0.938) 45 (0.938) 48 (1.000)
A3 68 61 (0.897) 61 (0.897) 68 (1.000)
B 58 52 (0.897) 52 (0.896) 58 (1.000)
C 553 522 (0.944) 522 (0.944) 536 (0.969)
D1 525 500 (0.952) 500 (0.952) 511 (0.973)
Total 1,354 1,282 (0.947) 1,282 (0.947) 1,323 (0.977)

Unmodified
D2 6,025 6,011 (0.998) 6,011 (0.998) 6,023 (0.999)
E1 36 33 (0.917) 33 (0.917) 36 (1.000)
E2 37 36 (0.973) 37 (1.000) 37 (1.000)
E3 401 398 (0.993) 398 (0.992) 401 (1.000)
Total 6,499 6,478 (0.997) 6,479 (0.997) 6,497 (1.000)
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Test Set B: Histone H3-(1–50) N-terminal Tail—Mascot was
the only compared algorithm for data set B because it is the
only algorithm of the five that is specifically capable of
handling the highly modified ECD spectra. Although X!Tandem
is able to search for c- and z�-ions, the algorithm imposes an
upper bound of one modification type for each amino acid. As
all of the histone MS/MS spectra in data set B contain more
than one type of lysine modification, it was expected that
X!Tandem would not be able to accurately identify the modifi-
cations in this data set. In fact, when tested, X!Tandem was
unable to assign a sequence to any of the 58 spectra.

Of the 58 MS/MS spectra in data set B, Mascot was not
able to completely annotate any of the peptides and only
correctly annotated 1 (1.7%) when allowing for up to two
incorrect modifications (Table IV). Alternatively, PILOT_PTM
was able to completely annotate 52 peptides (89.7%). Of the
six peptides that PILOT_PTM did not completely annotate,
the acetylation on lysine 14 was improperly assigned to lysine
18, indicating that PILOT_PTM was still able to assign the
proper modification type. The total number of correct residues
is also higher for PILOT_PTM (2,888; 99.6%) than for Mascot
(2,595; 89.5%) even though Mascot only allows for modifica-
tions on lysine, arginine, serine, threonine, and the termini
(supplemental methods), whereas PILOT_PTM utilizes the
universal list. This is clear evidence of the ability of
PILOT_PTM to accurately predict modification types when
given a high resolution MS/MS spectrum. The authors note
that Mascot is able to search using the entire list of modifi-
cations found in the UniMod database (29) in an error-tolerant
search (40). The results of the error-tolerant search were
slightly worse than the original search. Mascot retained

99.2% of the original residue annotations with some of the
previously unmodified residues now containing small mass
shifts associated with deamidation or amidation.

It is speculated that lysine methylation, dimethylation,
trimethylation, and acetylation interact together on the his-
tone H3-(1–50) N-terminal tail to give rise to a potential
histone “code” (47). It is highly essential that a PTM predic-
tion algorithm be capable of accurately identifying not only
the types of modifications but also the appropriate resi-
dues. Thus, we focused on the annotation of the eight
lysine residues in the H3-(1–50) N-terminal tail (Table IV).
PILOT_PTM was able to accurately identify 452 of the 464
(97.4%) lysine residues (modified or unmodified), whereas Mas-
cot was only able to identify 246 (53.0%) residues. More-
over, PILOT_PTM was able to correctly annotate the lysines
at positions 9, 14, 23, 27, 36, and 37 for all 58 spectra. In
fact, the highest scoring lysine residues for Mascot are at
positions closest to the termini (4, 14, and 37) where the
fragmentation is most prevalent for the annotated modified
form (supplemental annotations). Mascot scored very poorly
for the lysine residues at positions 18 and 23, possibly
resulting from the weaker fragmentation and the likely pres-
ence of other modified forms of lower abundance (Table IV).

Test Sets C and D1: Algorithm Comparison Protocol—To
compare the capability of PILOT_PTM against alternative pre-
diction algorithms for test data sets C and D1, a testing
protocol was developed for those algorithms that place an
upper bound on the number of modification sites or types. We
begin by constructing the set SAnn, which is the set of mod-
ifications that was used to create the annotated spectra. Note
that SAnn will be different for data sets C and D1. For each
data set, we then create a superset of common modifications,
STest, from the set SAnn by adding additional modifications
that have been reported on the peptides (data set C) (30) or
are commonly found (data set D1) (11). A set of modifications
is chosen for a trial as follows. 1) Select a set of modifications,
SKnown, from the annotated set SAnn that are known to be in
the sample. This reflects the user’s knowledge of the sample
in question and the PTMs thought to be present. The set
SKnown was fixed to be the four most prevalent modifications
in the annotated data set. 2) Select at random a set of un-
known modifications, SUnk, from the remaining modifications
in STest until the total amount of known and unknown modi-
fications totals nine, which is the upper bound for variable
modification types for Mascot. This reflects the user’s uncer-
tainty about the additional test modifications that may or may
not be present. The set of nine modifications extracted from
steps 1 and 2 represents the variable modifications that will
be checked. The modification list used in the protocol is
presented in Table V. The modifications that comprise STest

for each data set will be marked as either present (P) in the
test set only, present in the annotated set (A), or present in the
annotated set and the known set (C). The modifications in
SAnn will either be marked as A or C, and the modifications in

TABLE IV
Comparison results for H3-(1–50) spectra (data set B)

There exist 464 lysine residues and 2,900 total residues for the 58
spectra. Lysine residues 9, 14, 23, 27, and 36 correspond to the
modified residues for each spectra. The percent of correct annota-
tions is given in parenthesis next to the number of correct annota-
tions. PILOT_PTM data is reported in boldface font.

PILOT_PTM Mascot

Lysine modifications
Lys-4 58 (1.000) 51 (0.879)
Lys-9 58 (1.000) 18 (0.310)
Lys-14 52 (0.966) 48 (0.828)
Lys-18 52 (0.966) 1 (0.017)
Lys-23 58 (1.000) 2 (0.034)
Lys-27 58 (1.000) 31 (0.534)
Lys-36 58 (1.000) 39 (0.672)
Lys-37 58 (1.000) 56 (0.966)
Modified 452 (0.974) 246 (0.530)
Total 452 (0.974) 246 (0.530)

Overall accuracy
Correct peptides 52 (0.897) 0 (0.000)
Within 1 residue 52 (0.897) 0 (0.000)
Within 2 residues 52 (0.897) 1 (0.017)
Correct residues 2,888 (0.996) 2,595 (0.895)
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SKnown are marked as C. All remaining modifications are
marked as not present in the data set (N).

To estimate the expected prediction accuracy, we create
multiple modification lists using the above methodology to be
tested with the methods Mascot (11), X!Tandem (14), InsPecT
(4), and VEMS (6). Note that multiple modification lists are not
needed for PILOT_PTM or Modi (7) because these methods
place no restriction on the number of variable modifications. For
each variable modification list, a separate trial was conducted
for Mascot, X!Tandem, InsPecT, and VEMS. We report both the
average results and aggregate results over all trials. Average
results are calculated by first calculating the accuracy of an
algorithm for each trial and then determining the average result
over all trials. The aggregate result is calculated by first finding
the highest scoring peptide for each spectra over all trials and
then performing the accuracy calculations on these peptides.

For data set D1, the protocol is slightly modified for the
Modi algorithm to account for the fact that Modi can handle
the universal list of modifications but requires a database of at
most 20 proteins. Thus, we first determine the 10 proteins that
correspond to the largest total amount of modified peptides
and then randomly select 10 additional proteins that contain
at least one modified or unmodified spectrum in data sets D1
or D2. Average and aggregate results are calculated in a way
similar to that for the above methods. Note that this procedure
is not necessary for data set C because all of the test peptides

TABLE VI
Peptide and residue accuracies for comparison using propionylated histone fragments (data set C) and total chromatin peptides (data set D1)

Data set C contained 553 spectra with a total of 5,790 residues. Data set D1 contained 525 spectra with a total of 6,892 residues. Parameters
for each of the algorithms were chosen to reflect the quality of the spectra as well as the possibility for multiple modifications and missed cleavages.
The results for Mascot, InsPecT, VEMS, X!Tandem, and Modi contain both averaged (Avg.) and aggregated (Agg.) results based on the protocol
described in the text. For data set D1, InsPecT was also run in unrestricted search mode (Unr.) while allowing up to two modifications. The percent
of correct annotations is given in parenthesis next to the number of correct annotations. PILOT_PTM data is reported in boldface font.

Algorithm Peptide Within 1 Within 2 Residue

Data set C: propionylated histone fragments
PILOT_PTM 522 (0.944) 522 (0.944) 536 (0.969) 5,716 (0.987)
Mascot (Avg.) 449.8 (0.813) 449.8 (0.813) 473.2 (0.856) 5,115.3 (0.883)
Mascot (Agg.) 474 (0.857) 474 (0.857) 501 (0.906) 5,337 (0.922)
InsPecT (Avg.) 464.3 (0.840) 464.3 (0.840) 490.5 (0.887) 5,289.8 (0.914)
InsPecT (Agg.) 484 (0.875) 484 (0.875) 524 (0.948) 5,492 (0.949)
VEMS (Avg.) 107.6 (0.195) 107.6 (0.195) 180.3 (0.326) 2,196.2 (0.379)
VEMS (Agg.) 127 (0.230) 127 (0.230) 216 (0.391) 2,391 (0.413)
X!Tandem (Avg.) 186.6 (0.337) 225.3 (0.407) 253.0 (0.458) 2,976.1 (0.514)
X!Tandem (Agg.) 213 (0.385) 251 (0.454) 301 (0.544) 3,365 (0.581)
Modi 146 (0.264) 146 (0.264) 206 (0.373) 2,333 (0.403)

Data set D1: total chromatin peptides
PILOT_PTM 500 (0.952) 500 (0.952) 511 (0.973) 6,850 (0.994)
InsPecT (Avg.) 468.8 (0.893) 471.5 (0.898) 486.6 (0.927) 6,603.4 (0.958)
InsPecT (Agg.) 482 (0.918) 485 (0.924) 493 (0.939) 6,693 (0.971)
InsPecT (Unr.) 274 (0.522) 290 (0.552) 385 (0.733) 5,490 (0.797)
VEMS (Avg.) 377.6 (0.719) 377.9 (0.720) 400.6 (0.763) 5,474.8 (0.794)
VEMS (Agg.) 390 (0.743) 391 (0.745) 441 (0.840) 5,639 (0.818)
X!Tandem (Avg.) 455.4 (0.867) 455.4 (0.867) 464.0 (0.884) 6,271.7 (0.910)
X!Tandem (Agg.) 471 (0.897) 471 (0.897) 493 (0.939) 6,420 (0.932)
Modi (Avg.) 73.1 (0.139) 73.1 (0.139) 101.5 (0.193) 1,263.8 (0.183)
Modi (Agg.) 295 (0.562) 295 (0.562) 327 (0.623) 4,299 (0.624)

TABLE V
Testing protocol modification list

Each modification is either marked as “N,” not present in the test set
STest, “P,” present in the test set only, “A,” present in the test set and in
the annotated set SAnn, or “C,” present in the test and annotated sets
and kept constant during the testing protocol (present in SKnown).

Residue Modification Mass (Da) Data
set C

Data
set D1

C terminus Amidation �0.9841 P A
Asn Deamidation 0.9841 N P
Gln Deamidation 0.9841 N P
Arg Citrullination 0.9841 P N
Asp Methylation 14.0157 N P
Glu Methylation 14.0157 N P
Lys Methylation 14.0157 A A
Arg Methylation 14.0157 P A
C terminus Methylation 14.0157 A N
Met Oxidation 15.9949 N C
Trp Oxidation 15.9949 N P
Lys Dimethylation 28.0313 A C
Arg Dimethylation 28.0313 P P
Met Dioxidation 31.9898 N P
Lys Acetylation 42.0106 C C
N terminus Acetylation 42.0106 A C
Lys Trimethylation 42.0470 P N
N terminus Propionylation 56.0262 C N
Lys Propionylation 56.0262 C N
Lys Methylated propionylation 70.0419 C N
Ser Phosphorylation 79.9663 P A
Thr Phosphorylation 79.9663 P P
Tyr Phosphorylation 79.9663 P P
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come from a single histone H3 protein. The remaining 19
proteins are randomly selected from the NCBInr database
with human taxonomy.

Test Sets C and D1—The peptide and residue prediction
accuracy for all algorithms is presented in Table VI. We first
note that the aggregate score for any algorithm is higher than
the corresponding average score. This is not surprising be-
cause the aggregate accuracy comprises the highest scoring
results from each trial, but it should be noted that multiple
trials are needed to determine the aggregate score. Thus,
there is clearly an added cost in terms of the number of trials
that need to be run to achieve the aggregate score. We
look to the average score for an indication of how accurate an
algorithm is on any given trial and expect the accuracy to
improve to the aggregate accuracy as more trials are run.
Note that PILOT_PTM, Modi (data set C only), and InsPecT in
unrestricted mode (data set D1 only) do not require more than
one trial. Although the average and aggregate scores are
reported for the residue prediction accuracy (Table VI), the
peptide prediction accuracy (Table VI), and the subsequence
accuracy (Table VII and Fig. 2), the following discussion will
solely focus on the aggregate results.

PILOT_PTM is able to fully predict 522 (94.4%) of the pep-
tides from data set C and 500 (95.2%) from data set D1.

Alternatively, Mascot is only able to fully identify 474 (85.7%)
peptides from data set C, whereas InsPecT fully identifies 484
(87.5%) from data set C and 482 (91.8%) from data set D1
(Table VI). The accuracy of the remaining algorithms for data
set C was significantly lower than that for Mascot with
X!Tandem reporting the highest of the remainder (213 peptides).
X!Tandem was also able to fully identify 471 (89.7%) of the
peptides in data set D1 followed by VEMS with a total of 390
(74.3%). The blind search of InsPecT reported only 274
(52.2%) fully annotated peptides from data set D1, the lowest
of all algorithms (Table VI, aggregate scores only). When
allowing for up to two incorrect residues, PILOT_PTM is able
to predict 536 peptides (96.9%) from data set C and 511
(97.3%) from data set D1. InsPecT is the next highest in data
set C with 524 identified peptides (94.8%) and ties X!Tandem
with 493 peptides (93.9%) for data set D1. Mascot scores the
next highest in data set C with 501 peptides (90.6%), and
VEMS follows InsPecT and X!Tandem in data set D1 with 441
peptides (84.0%). We also see that the blind search of
InsPecT accuracy improves to 73.3% (385 peptides) when
allowing for two incorrect modifications, although it is still
10.7% lower than VEMS.

The ability to predict a subsequence of a given length gives
insight into the effectiveness of an algorithm to sequence a

TABLE VII
Subsequence accuracy results for comparison using propionylated histone fragments (data set C) and total chromatin peptides (data set D1)

The results for Mascot, InsPecT, VEMS, X!Tandem, and Modi contain both averaged (Avg.) and aggregated (Agg.) results based on the
protocol described in the text. For data set D1, InsPecT was also run in unrestricted search mode (Unr.) while allowing up to two modifications.
The percent of correct annotations is given in parenthesis next to the number of correct annotations. PILOT_PTM data is reported in boldface
font.

L � 3 L � 4 L � 5 L � 6 L � 7 L � 8 L � 9

Data set C: propionylated
histone fragments

Total peptides 553 553 553 553 514 514 514
PILOT_PTM 553 (1.000) 553 (1.000) 548 (0.991) 548 (0.991) 501 (0.975) 501 (0.975) 495 (0.963)
Mascot (Avg.) 490.9 (0.888) 489.1 (0.884) 489.0 (0.884) 480.2 (0.868) 458.3 (0.892) 458.2 (0.891) 458.2 (0.891)
Mascot (Agg.) 526 (0.951) 525 (0.949) 521 (0.942) 521 (0.942) 483 (0.940) 483 (0.940) 482 (0.938)
InsPecT (Avg.) 501.6 (0.907) 472.9 (0.855) 456.5 (0.825) 425.7 (0.770) 403.7 (0.785) 402.7 (0.783) 402.1 (0.782)
InsPecT (Agg.) 525 (0.949) 520 (0.940) 511 (0.924) 502 (0.908) 431 (0.839) 430 (0.837) 430 (0.837)
X!Tandem (Avg.) 308.4 (0.558) 307.3 (0.556) 297.7 (0.538) 294.5 (0.533) 265.4 (0.516) 262.1 (0.510) 221.1 (0.430)
X!Tandem (Agg.) 342 (0.618) 339 (0.613) 331 (0.599) 328 (0.593) 301 (0.586) 301 (0.586) 286 (0.556)
VEMS (Avg.) 332.8 (0.602) 203.3 (0.368) 193.9 (0.351) 189.2 (0.342) 175.6 (0.342) 175.6 (0.342) 175.6 (0.342)
VEMS (Agg.) 363 (0.656) 287 (0.519) 259 (0.468) 243 (0.439) 212 (0.412) 209 (0.407) 209 (0.407)
Modi 231 (0.418) 219 (0.396) 211 (0.382) 211 (0.382) 210 (0.409) 210 (0.409) 210 (0.409)

Data set D1: total chromatin
peptides

Total peptides 525 525 525 525 523 515 505
PILOT_PTM 525 (1.000) 522 (0.994) 521 (0.992) 521 (0.992) 519 (0.992) 511 (0.992) 495 (0.980)
InsPecT (Avg.) 503.3 (0.959) 499.2 (0.951) 491.4 (0.936) 487.5 (0.929) 483.7 (0.925) 480.5 (0.933) 472.5 (0.936)
InsPecT (Agg.) 518 (0.987) 509 (0.970) 505 (0.962) 499 (0.950) 497 (0.950) 491 (0.953) 485 (0.960)
InsPecT (Unr.) 515 (0.981) 502 (0.956) 486 (0.926) 471 (0.897) 453 (0.866) 431 (0.837) 412 (0.816)
X!Tandem (Avg.) 465.9 (0.887) 465.9 (0.887) 464.0 (0.884) 463.4 (0.883) 463.4 (0.886) 463.3 (0.900) 456.4 (0.904)
X!Tandem (Agg.) 481 (0.916) 481 (0.916) 479 (0.912) 478 (0.910) 478 (0.914) 478 (0.928) 471 (0.933)
VEMS (Avg.) 457.8 (0.872) 451.7 (0.860) 445.6 (0.849) 443.4 (0.845) 440.8 (0.843) 439.4 (0.853) 424.8 (0.841)
VEMS (Agg.) 471 (0.897) 463 (0.882) 461 (0.878) 457 (0.870) 457 (0.874) 455 (0.883) 441 (0.873)
Modi (Avg.) 328.2 (0.625) 319.1 (0.608) 319.1 (0.608) 317.9 (0.606) 267.2 (0.511) 107.3 (0.208) 70.1 (0.139)
Modi (Agg.) 332 (0.632) 330 (0.629) 328 (0.625) 328 (0.625) 301 (0.576) 298 (0.579) 278 (0.550)
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portion of the peptide using appropriate spectral information
(Fig. 2 and Table VII). PILOT_PTM reports a subsequence
accuracy of 100% for all L � 4 in data set C and for all L � 3
in data set D1. This implies that PILOT_PTM was able to
correctly annotate four consecutive amino acids for all 553
spectra in data set C and three consecutive amino acids for all
525 spectra in data set D1. Additionally, PILOT_PTM outper-
forms all competing algorithms for each listed length for both
data set C and set D1 and maintains an accuracy that is at
least 3.5% greater than the next highest scoring algorithm for
data set C and at least 1.3% greater for data set D1 (Table VII).

Complete MS Analysis

Complete LC-MS/MS Untargeted Modification Search Pro-
tocol—To run an untargeted modification search with
PILOT_PTM on a complete MS scan, we must first generate a

set of candidate template sequences for use with the algorithm.
The sequences will be generated by initially scanning the data
using a peptide sequencing algorithm to uncover all spectra
that are either unmodified or contain oxidized methionine.
Using the SEQUEST algorithm (10), a protein list (PL; proba-
bility 
5e�5) was generated, and a superset of candidate
template sequences (TS) is then defined as the non-redun-
dant list of peptide sequences found in the search. We aug-
ment PL with a dummy “No match” protein and then map all
peptides in TS to their corresponding proteins in PL. Any
peptide that was not assigned a protein from the SEQUEST
search is assigned No match.

The spectra not annotated by SEQUEST were subject to
filtering where those that did not contain at least 50 ion peaks
were removed. For each remaining spectra, we run the fol-
lowing sequence of steps. 1) Determine a three-amino acid

FIG. 2. Subsequence accuracy results from comparisons using data sets C and D1. The results from Mascot (data set C), InsPecT
(restricted), VEMS, X!Tandem, and Modi (data set D1) are calculated using many trials, each consisting of a distinct variable modification list.
The results for PILOT_PTM, Modi (data set C), and InsPecT in blind search mode (unrestricted (Unr.); data set D1) are reported for only one
trial because these algorithms do not place a restriction on the types of variable modifications considered. a, aggregate (Agg.) subsequence
accuracies for the histone fragment test data set. b, average (Avg.) subsequence accuracies for the histone fragment test data set. c, aggregate
subsequence accuracies for the chromatin test data set. d, average subsequence accuracies for the chromatin test data set.
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unmodified sequence tag based on the experimental data. 2)
Search all peptides in TS to derive a list of template se-
quences that exactly contain the sequence tag. 3) Run the
PILOT_PTM algorithm for each template sequence. 4) Com-
pare the cross-correlation score of the top modified peptide
for each template sequence and select the peptide that has
the highest score. Because of the large number of template
sequences generated during step 2 of the above procedure,
we imposed a window on the possible mass gaps for possible
modifications (step 3). We set the lower bound to be �50 Da
and the upper bound to be 250 Da.

Case Study: Total Chromatin Extraction—The above proto-
col was tested on several data sets generated from a total
chromatin extraction. All spectra that had a minimum XCorr
value (1.5 for z � 1, 2.0 for z � 2, 2.5 for z � 3, and 3.0 for z �

4) were annotated with the associated peptide and oxidized
methionine modifications (if applicable), and PL and TS were
generated as described above. A total of 466,905 spectra were

initially analyzed with the SEQUEST algorithm. A total of 81,961
unmodified spectra and 4,838 modified spectra were found,
yielding 19,250 distinct peptides and 1,913 distinct proteins.
After applying the ion peak filtering, a total of 273,733 spectra
were analyzed with PILOT_PTM. Prior to searching, all isotopic
labels were removed from the universal list of modifications as
these modifications will not be present in the chromatin data.

The sequence tag generation step reduced the number of
template sequences per MS/MS spectrum to �10 on aver-
age. Some of these sequences will not be able to generate
appropriate sets of valid candidate ion peaks (CSk) for several
consecutive amino acids because of the inability to connect
candidate ion peaks with an appropriate series of jumps. The
total number of template sequences fully analyzed by
PILOT_PTM is �6 per MS/MS spectrum on average (46,610
sequences).

PILOT_PTM assigned a sequence with modifications or
amino acid substitutions to 7,641 spectra, including a total of

FIG. 3. Modification histogram for untargeted analysis of a chromatin fraction. Each modification is given an abbreviation (Abb.) of the
form AA-M where AA is the name of the amino acid and M is the modification type. Note that CT and NT refer to the C terminus and N terminus,
respectively. a, histogram of the total amount of modification counts present in all 7,668 annotated spectra. b, numerical table for the
modifications in a.
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6,356 modifications and 11,391 substitutions. We report the
histogram of modifications for all annotated spectra in Fig. 3.
Oxidized methionine (1,957 PTMs) was removed from Fig. 3 to
show the counts of the other modifications in higher detail.
C-terminal methylation and N-terminal acetylation appeared
829 and 330 times, respectively. However, these modifica-
tions are likely the result of sample preparation and not post-
translational modification. Methylation is the most prevalent
modification appearing on the N terminus (257 PTMs), lysine
(179 PTMs), arginine (110 PTMs), aspartic acid (109 PTMs),
asparagine (88 PTMs), threonine (67 PTMs), and glutamine (33
PTMs). Dimethylation is the next most abundant modification
appearing on the N terminus (247 PTMs), lysine (184 PTMs),
arginine (102 PTMs), and asparagine (35 PTMs). Acetylation is
annotated on serine (110 PTMs) and lysine (46 PTMs); deami-
dation is annotated on glutamine (163 PTMs), asparagine (83
PTMs), and arginine (15 PTMs); formylation is annotated on
serine (65 PTMs) and threonine (62 PTMs); and hydroxylation
is annotated on proline (121 PTMs), valine (103 PTMs), and
aspartic acid (39 PTMs).

DISCUSSION

A novel integer linear framework for the assignment of
PTMs on a template sequence was developed. PILOT_PTM
utilizes the universal list of modifications while placing no
restrictions on the amount of modification types or modifi-
cation sites for a given peptide. The case studies presented
above demonstrate the high accuracy of the PILOT_PTM
algorithm when analyzing modified spectra that come from
different mass spectrometers as well as different fragmen-
tation patterns. The superior ability of PILOT_PTM when
compared with five current PTM prediction algorithms is
demonstrated using highly modified histone H3-(1–50) pep-
tides and peptides from a large scale chromatin-enriched
fraction. The performance of PILOT_PTM may be due to the
amount of peaks selected from the MS/MS spectrum for
analysis. Database and hybrid methods may use fewer
peaks to discriminate between correct and incorrect results,
but it is often necessary to utilize lower abundance peaks to
properly assign the modification type and modification site
when a large variable modification list is considered. To
maintain the efficiency of PILOT_PTM when the MS/MS
spectrum contains many peaks, a strict filtering algorithm is
used during the preprocessing stage (supplemental methods)
to eliminate all possible isotopes, neutral losses, and mul-
tiply charged ions from consideration in the candidate peak
list. In fact, the preprocessing stage is crucial for the ECD
data where the spectral resolution often enables proper
assignment of many charge states that can be converted
into the appropriate singly charged peak or removed from
consideration.

The computational run time for a completely automated run
of PILOT_PTM for a single template sequence is shown in
detail for the data sets in Table VIII. The time is reported for

both the single thread and parallelized version of CPLEX (55)
(eight threads) on average on a Intel Pentium 4 3.0-GHz
Linux-based computer. For each data set, we calculate the
average number of residues, R� , per peptide by dividing the
total number of residues (Table II) by the total number of
peptides (Table III). The average CPU time for all data sets
ranged from 8.7 to 18.3 CPU s with ranges from 9.1 to 16.1 for
all data sets except set B. The increase in CPU time for this
data set is due to the large number of peaks present in the
ECD data set (R� � 50) that were retained by PILOT_PTM. The
average run time is reduced on average by a factor of 4.85 if
a parallelized version of CPLEX is used. With an average
computational time of 2.8 CPU s per spectrum, the total time
required to run all stages of PILOT_PTM and output results for
all 7,853 spectra is 6.1 CPU h. Furthermore, addition of mod-
ifications to the universal list does not result in an increase in
PILOT_PTM run time because the amount of binary variables
and constraints will remain unchanged in the ILP. The raw
spectral data and source code for the PILOT_PTM algorithm
are available upon request.
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TABLE VIII
Average PILOT_PTM computational time per spectrum for each data

set

The average time to process a spectrum was measured using
CPLEX version 11.1 on a Pentium 4 3.0-GHz Linux-based computer.
The parallel time utilized the parallel CPLEX software package on an
eight-thread unit. The reported time is taken as the average over all
spectrum in that data set. The average number of residues per pep-
tide, R� , is calculated for each data set as the total number of residues
divided by the total number of peptides.

Data set Avg. time Avg. parallel time R�

s s

A1 8.7 1.7 9.2
A2 18.3 3.5 16.1
A3 16.9 3.5 14.1
B 98.3 20.1 50.0
C 17.3 3.4 10.5
D1 15.2 3.0 13.1
D2 12.6 2.6 14.0
E1 11.8 2.4 11.3
E2 10.9 2.1 11.3
E3 9.8 2.0 9.1
Total 13.6 2.8 13.7
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